SEPURAN® NG
Membrane technology for efficient natural gas processing
Our membranes have been designed for conventional, membrane-based natural gas processing plants. As plug-in replacement for all standard 8" membranes no further adaptations are required to the existing equipment.

SEPURAN® NG is an especially robust, hollow-fiber membrane, which is based on a high-performance polymer that can withstand extreme pressure and temperatures, and features a stable performance even in the presence of H₂S, water or higher hydrocarbon concentrations.

Consistently high performance

Modular structure
SEPURAN® NG VALUE CHAIN

EVONIK BUSINESS
Monomer

Polymer

Membrane

Module/Cartridge System

EVONIK TECHNOLOGY SUPPORT

APPLICATIONS
Offshore applications with dedicated partners

Onshore applications with dedicated partners
SEPURAN® NG is an especially selective and robust hollow-fiber membrane, which is based on a high-performance polymer that can withstand extreme pressure and temperatures.

This enables particularly selective separation of the sour gases from the natural gas, high tolerance of the higher hydrocarbons contained in the natural gas, and consistently high performance of the membrane throughout its lifetime. Overall, Evonik’s innovative separation technology features significantly increased recovery of methane, which has a corresponding effect on the profitability of natural gas processing plants.

The membrane is designed for the challenging process conditions of natural gas processing with complex gas compositions and typical pressure and temperature conditions up to 70 °C. It can be used particularly effectively in natural gas sources with a high concentration of carbon dioxide because, under these conditions, the separating properties of the membrane remain intact.

Increasing performance

Performance improvements in membranes makes them more competitive to amines.
Feed gas enters the cartridge through holes in the protective sleeve and is forced to flow through the structurally packed hollow fiber bundle. Fast-permeating gas components like CO₂ and H₂O can enter the fiber lumen; the permeate gas is collected in the center tube. Slow components like CH₄ pass the bundle and leave the cartridge at the retentate end. An adjustable seal ring guarantees securely separated feed and retentate gas zones. The retentate gas of the leading cartridge of a multiple cartridge arrangement becomes the feed gas of the next cartridge in the series. Typically 3 to 5 cartridges are connected in series in the same housing.
This information and all technical and other advice are based on Evonik’s present knowledge and experience. However, Evonik assumes no liability for such information or advice, including the extent to which such information or advice may relate to third party intellectual property rights. Evonik reserves the right to make any changes to information or advice at any time, without prior or subsequent notice.

EVONIK DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, WHETHER EXPRESS OR IMPLIED, AND SHALL HAVE NO LIABILITY FOR, MERCHANTABILITY OF THE PRODUCT OR ITS FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE), OR OTHERWISE. EVONIK SHALL NOT BE RESPONSIBLE FOR CONSEQUENTIAL, INDIRECT OR INCIDENTAL DAMAGES (INCLUDING LOSS OF PROFITS) OF ANY KIND.

It is the customer’s sole responsibility to arrange for inspection and testing of all products by qualified experts. Reference to trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used.

* = registered trademark